rstatix
library(rstatix)
library(ggpubr) # For easy data-visualizatio
library(gtsummary)
library(tidyverse)
iris %>%
group_by(Species) %>%
get_summary_stats(Sepal.Length, Sepal.Width, type = "common")
iris %>% get_summary_stats(type = "common")
iris %>%
group_by(Species) %>%
get_summary_stats(Sepal.Length, show=c('n'))
df <- ToothGrowth
df$dose <- as.factor(df$dose)
# 比较2个独立组别
df %>%
t_test(len ~ supp, paired = FALSE) -> stat.test
# 分组数据:在按照「dose」分组后比较 supp 水平:
stat.test <- df %>%
group_by(dose) %>%
t_test(len ~ supp) %>%
adjust_pvalue() %>%
add_significance("p.adj")
# 比较配对样本
stat.test <- df %>%
t_test(len ~ supp, paired = TRUE)
stat.test <- df %>%
# 成对比较:如果分组变量包含多于2个分类,会自动执行成对比较
pairwise.test <- df %>% t_test(len ~ dose)
# 基于参考组的成对比较
stat.test <- df %>% t_test(len ~ dose, ref.group = "0.5")
# 基于总体水平的成对比较
# T-test
stat.test <- df %>% t_test(len ~ dose, ref.group = "all")
# One-way ANOVA test
df %>% anova_test(len ~ dose)
# Two-way ANOVA test
df %>% anova_test(len ~ supp*dose)
# Two-way repeated measures ANOVA
df$id <- rep(1:10, 6) # Add individuals id
df %>% anova_test(len ~ supp*dose + Error(id/(supp*dose)))
# Use model as arguments
.my.model <- lm(yield ~ block + N*P*K, npk)
anova_test(.my.model)
mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, qsec)
mydata %>% cor_test(wt, mpg, method = "pearson")
#先选择部分变量进行展示
trial2 <- trial %>% select(age, grade, death, trt)
# 绘制
table1 <- tbl_summary(trial2)
table2 <-
tbl_summary(
trial2,
by = trt, # 分组
statistic = list(all_continuous() ~ "{mean} ({sd})"),
missing = "no", #
) %>%
add_n() %>% # 添加非NA观测值个数
add_p() %>% # 添加P值
add_overall() %>%
modify_header(label = "**Variable**") %>% # 标签列header
bold_labels() #label 粗体
table3 <-
tbl_summary(
trial2,
by = trt, # 分组
statistic = list(all_continuous() ~ "{mean} ({sd})")
) %>%
add_p(test = list(all_continuous() ~ "t.test")) # 添加P值
#构建逻辑回归
mod1 <- glm(response ~ trt + age + grade, trial, family = binomial)
t1 <- tbl_regression(mod1, exponentiate = TRUE)
t1
library(survival)
t2 <-
coxph(Surv(ttdeath, death) ~ trt + grade + age, trial) %>%
tbl_regression(exponentiate = TRUE)
t2
# merge tables
tbl_merge_ex1 <-
tbl_merge(
tbls = list(t1, t2), tab_spanner = c("**Tumor Response**", "**Time to Death**") #防止混淆,定义名字
)
评论
发表评论