corrr包
# install.packages(“remotes”)
#remotes :: install_github(“tidymodels / corrr”)
library(MASS)
library(corrr)
set.seed(1)
# 模拟三列,相关性为.7
mu <- rep(0, 3)
Sigma <- matrix(.7, nrow = 3, ncol = 3) + diag(3)*.3
seven <- mvrnorm(n = 1000, mu = mu, Sigma = Sigma)
# 模拟三列,相关性为.4
mu <- rep(0, 3)
Sigma <- matrix(.4, nrow = 3, ncol = 3) + diag(3)*.6
four <- mvrnorm(n = 1000, mu = mu, Sigma = Sigma)
# Bind together
d <- cbind(seven, four)
colnames(d) <- paste0("v", 1:ncol(d))
# Insert some missing values
d[sample(1:nrow(d), 100, replace = TRUE), 1] <- NA
d[sample(1:nrow(d), 200, replace = TRUE), 5] <- NA
# Correlate
x <- correlate(d)
class(x)
library(dplyr)
# Filter rows by correlation size
x %>% filter(v1 > .6)
x <- datasets::mtcars %>%
correlate() %>% #创建相关数据框(cor_df)
focus(-cyl, -vs, mirror = TRUE) %>% #专注于没有'cyl'和'vs'的cor_df
rearrange() %>% #重新排列相关性
shave() #shave()上三角或下三角(设置为NA)
#漂亮印花的相关性
fashion(x)
#与形状的相关性代替值
rplot(x)
data("airquality")
#网络中的相关性
datasets::airquality %>%
correlate() %>%
network_plot(min_cor = .2)
#remotes :: install_github(“tidymodels / corrr”)
library(MASS)
library(corrr)
set.seed(1)
# 模拟三列,相关性为.7
mu <- rep(0, 3)
Sigma <- matrix(.7, nrow = 3, ncol = 3) + diag(3)*.3
seven <- mvrnorm(n = 1000, mu = mu, Sigma = Sigma)
# 模拟三列,相关性为.4
mu <- rep(0, 3)
Sigma <- matrix(.4, nrow = 3, ncol = 3) + diag(3)*.6
four <- mvrnorm(n = 1000, mu = mu, Sigma = Sigma)
# Bind together
d <- cbind(seven, four)
colnames(d) <- paste0("v", 1:ncol(d))
# Insert some missing values
d[sample(1:nrow(d), 100, replace = TRUE), 1] <- NA
d[sample(1:nrow(d), 200, replace = TRUE), 5] <- NA
# Correlate
x <- correlate(d)
class(x)
library(dplyr)
# Filter rows by correlation size
x %>% filter(v1 > .6)
x <- datasets::mtcars %>%
correlate() %>% #创建相关数据框(cor_df)
focus(-cyl, -vs, mirror = TRUE) %>% #专注于没有'cyl'和'vs'的cor_df
rearrange() %>% #重新排列相关性
shave() #shave()上三角或下三角(设置为NA)
#漂亮印花的相关性
fashion(x)
#与形状的相关性代替值
rplot(x)
data("airquality")
#网络中的相关性
datasets::airquality %>%
correlate() %>%
network_plot(min_cor = .2)
评论
发表评论