library(INLA) library(sf) library(gstat) library(tidyverse) data(sic97) # 直接在一个流程中准备全部数据 df_rain <- sic_full %>% st_as_sf() %>% mutate( altitude = raster::extract(raster::raster(demstd), as.matrix(st_coordinates(.))), coords = st_coordinates(.) ) %>% mutate( lat = coords[, 1] / 1000, lon = coords[, 2] / 1000 ) %>% dplyr::select(ID, rainfall, altitude, lat, lon) # 检查空间依赖性 df_rain %>% as_Spatial() %>% variogram(rainfall ~ 1, data = .) %>% graphics::plot() # 创建网格 loc <- cbind(df_rain$lat, df_rain$lon) Mesh <- inla.mesh.2d( loc.domain = loc, max.edge = c(20, 100), cutoff = 1 ) ggplot() + inlabru::gg(Mesh) + geom_point(data = data.frame(x = loc[,1], y = loc[,2]), aes(x = x, y = y), color = "red", shape = 1) + theme_...