library(rstatix) library(ggpubr) # For easy data-visualizatio library(gtsummary) library(tidyverse) iris %>% group_by(Species) %>% get_summary_stats(Sepal.Length, Sepal.Width, type = "common") iris %>% get_summary_stats(type = "common") iris %>% group_by(Species) %>% get_summary_stats(Sepal.Length, show=c('n')) df <- ToothGrowth df$dose <- as.factor(df$dose) # 比较2个独立组别 df %>% t_test(len ~ supp, paired = FALSE) -> stat.test # 分组数据:在按照「dose」分组后比较 supp 水平: stat.test <- df %>% group_by(dose) %>% t_test(len ~ supp) %>% adjust_pvalue() %>% add_significance("p.adj") # 比较配对样本 stat.test <- df %>% t_test(len ~ supp, paired = TRUE) stat.test <- df %>% # 成对比较:如果分组变量包含多于2个分类,会自动执行成对比较 pairwise.test <- df %>% t_test(len ~ dose) # 基于参考组的成对比较 stat.test <- df %>% t_test(len ~ dose, ref.group = "0.5") # 基于总体水平的成对比较 # T-test stat.test <- df %>% t_test(le