# -*- coding: utf-8 -*- import pandas as pd data = {'Country': ['Belgium', 'India', 'Brazil'], 'Capital': ['Brussels', 'New Delhi', 'Brasília'], 'Population': [11190846, 1303171035, 207847528]} df = pd.DataFrame(data, columns=['Country', 'Capital', 'Population']) s = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd']) df['Country'] #By Position # Select single value by row & column df.iloc[0,0] df.iat[0,0] #By Label #Select single value by row & column labels df.loc[0,'Country'] df.at[0, 'Country'] # By Label/Position # Select single row of subset of rows df.ix[2] #Select a single column of subset of columns df.ix[:,'Capital'] # Select rows and columns df.ix[1,'Capital'] #Boolean Indexing # Series s where value is not >1 s[~(s > 1)] #s where value i...